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Abstract. The complex interaction of humans with digitized technol-
ogy has far reaching consequences, many of which are still completely
opaque in the present. Technology like social networks, artificial intelli-
gence and automation impacts life at work, at home, and in the political
sphere. When work is supported by decision support systems and self-
optimization, human interaction with such systems is reduced to key
decision making aspects using increasingly complex interfaces. Both, al-
gorithms and human operators become linchpins in the opaque workings
of the complex socio-technical system. Similarly, when looking at human
communication flows in social media, algorithms in the background con-
trol the flow of information using recommender systems. The users react
to this filtered flow of information, starting a feedback-loop between users
and algorithm—the filter bubble. Both scenarios share a common feature:
complex human-algorithm interaction. Both scenarios lack a deep under-
standing of how this interaction must be properly designed. We propose
the use of agent-based modeling to address the human-in-the-loop as a
part of the complex socio-technical system by comparing several methods
of modeling and investigating their applicability.
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1 Introduction

Our world is becoming increasingly complex, but how?. According to Moore’s
law [1] the power of modern computers increases with an exponential rate. As
with any exponential growth curve, when a certain tipping point is reached,
growth becomes fast so quickly that it seems unbounded. This tipping has been
reached for computing power. Thanks to the inventions like mobile Internet,
cloud storage, cloud computing [2], and with the rise of AI technologies such
as deep learning [3], much of this newly available power can finally be used
by algorithms that utilize Big Data using GPUs to find solutions to previously
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seemingly intractable problems (e.g., image recognition, face detection, speech
recognition, etc.).

However, it seems that many problems still remain unfeasible to be solved
by algorithms alone. When it comes to questions of ethics, responsibility, or
intimacy [4] humans and their elaborated and cognizant decision making are
required. Similarly, for many other problems the combination of skills of humans
and computers is considered to be the optimal strategy—the human-in-the-loop
helps the computer to overcome its limitations, or vice versa [5]. The challenge
for such settings is designing the human-computer interface to reduce “friction-
loss” at the seam. For many problems efficient interfaces exist. The interaction of
algorithm and human is already so pervasive that many users are even unaware
of the algorithmic procedure and complexity running behind the scenes. A user
that uses Google to find search results does not need to know about the Page-
Rank algorithm or the personalization of search results based on complex tensor
decomposition techniques.

The interaction of humans and algorithms thus brings visible and invisible
complexity to the table that has deep consequences for almost all areas of human
life. For example, it affects work by drastically changing requirements in jobs.
Will future jobs be only available to workers with an understanding of data that
can focus on monitoring complex data? It affects the private life by changing
what is made available by social media to the users and by creeping into all
economic decisions. If a financial scoring algorithm detects patterns of estab-
lished social injustice and recommends not giving a poor family credit, does it
perpetrate prejudice [6]? It affects political life by introducing algorithmic deci-
sions into the political discourse on social media, in search, and in political ad
targeting. They who have the data, have the voters? Some of these questions
oversimplify the underlying problems of biased data, biased learning, and biased
decision-making.

But what exactly is this new complexity? What are its reasons? And how
can human factors research address these?

2 Complex Systems and Agent-based Modeling

To understand where complexity comes from it is necessary to look at the un-
derlying systemic structure of phenomena. In this article we investigate different
levels of complexity, how they bring rise to emergent phenomena and look into
models of understanding such phenomena. For this purpose we investigate two
fields of application, that are heavily influences by algorithms. The first aspect
is opinion forming in social media and the second aspect is the interaction of
humans and algorithms in working environments.

2.1 Complexity and Chaotic Systems

It is necessary to understand where complexity arises, what causes it, and how
it can be addressed. But first, we must differentiate complex from complicated.
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Both concepts relate to a system of components, but the terms address different
aspects of the systems. The term complicated is inherently linked to human un-
derstanding. It refers to being hard to understand. A long differential equation is
a good example for something that is complicated. However, it is not necessarily
complex, as it may have only few little parts. Complexity, in contrast, refers to
the number of sub-components and their interactions that lead to system behav-
ior that is hard to predict. A complex system does not need to be complicated,
and a complicated system does not need to be complex.

Complexity is often associated with both the number of the constituent parts
of a system and the intricate interactions of those parts [7,8]. The latter compo-
nent yields another requirement for complexity—complex systems are dynamic.
A static system with many parts is never truly complex, as it can be extensively
studied. But, what makes complex problems so hard to solve ?

Emergent Phenomena. When we study complex systems, it is not necessarily
true that we will be able to derive the system behavior from an understanding of
the parts of the system. The whole is more than the sum of its parts. By merely
observing the behavior of its parts, we remain ignorant to the behavior of the
system.

One complex system that can easily be observed in the real world is the
strategy of a colony of ants finding food. Each ant shows only a very simple
behavior. Each ant has no model of the world, yet it explores the world search
for food, dropping pheromones while walking. When returning to the ant hill
with food, it follows the pheromones dropped earlier, but this time increasing
the amount of pheromone dropped. Every ant follows pheromone traces and thus
reinforces the trail, when it carries food back to the hill, dropping pheromones
along the way. The wind carries away all those pheromones that are not contin-
uously reinforced. This process optimizes the ants’ path to food sources without
any individual knowledge of the world and without the need for communication
or control between ants. The relatively efficient food finding that results from
this behavior, emerges from the interaction of ants, pheromones, food, and wind.
This systemic behavior is utilized in ant colony algorithms [9] to solve complex
problems with only local knowledge.

But, when looking at the inside of the “internal program” of the ant, only
someone who is familiar with ant colony algorithms, would guess this emer-
gent behavior; although it occurs consistently, robustly, and relatively error-free.
While we can observe and understand the individual behavior quite well, it is this
non-observability of emergence from the individual that makes understanding of
such system hard.

Non-Linear Behavior. A linear system is a system that can be described using
linear equations. The input into such a system linearly influences the output of
the system. Typical descriptive sentences about linear systems are sentences such
as “X is proportional to Y”. The more you add of “X” the more you get of “Y”.



4 Calero Valdez & Ziefle

The methods to study such systems typically are also linear models, such
as multiple-linear regression models and correlation models. Such models are
relatively easy to grasp, as they follow “the more of this, the more of that” logic.
But, many systems are not as easily described. Some show non-linear behavior
as for example interest rates in a bank account. An account with an interest
rate of 10% is easily predicted over the course of 1 year—it increases about
10%. However, most humans fail in predicting and mentally comparing different
interest rates (i.e. exponential growth) over longer periods of time [10]. How
large is the difference of an account with 10% interest rate to an account with
12% interest rate? If you put 1,000$ into an account and let it sit over the course
of 50 years, the first will yield approx. 100,000$ the latter almost 300,000$.

Systems as these can be described using non-linear equations (e.g. polynomi-
als, exponential-functions). In non-linear systems small changes can have large
effects, and vice versa, large changes can result in small effects. And while such
systems are harder to understand, it gets even worse when feedback loops are
part of the system.

Systems that include feedback loops, exhibit behavior that affects the be-
havior of the system itself. To adequately describe such systems it is necessary
to utilize differential equations. Differential equations are equations that include
the derivative of a function. For example, when calculating how long it would
take for an object to fall: One must consider the acceleration due to gravity, the
longer it falls, the faster it becomes. But, air-friction depends on the speed of the
object. The faster it is, the stronger the counter-acting force of air resistance.
So how long does it take for a sky-diver to fall from 500 meters? In this case
this equation can be solved explicitly. But, when one increases the distance to
5,000 meters, the differences in air-density makes this problem intractable to
analytical processes. In such cases numeric simulation procedures are required
to estimate adequate solutions.

Chaotic Behavior. A system is said to behave chaotically when even only
a slight difference in the initial conditions leads to completely different behav-
ior [11], often described as the butterfly effect [12].1 This does not mean that the
system behaves randomly, it can be very deterministic, but still the outcome is
hard to predict from similar inputs. Some of these systems show very different
behavior for similar initial conditions, but predicting the outcome of two such
states in the future is intractable. If the state remains in some close boundaries
but is hard to predict, we call these systems strange attractors—most famously
the Lorenz-Attractor.

A famous example for a chaotic system is a double-pendulum, where it is
very hard to predict the position of the 2nd weight from its origin position (see
Fig. 1). Not all complex systems behave chaotically and not all chaotic systems
are complex—as the double-pendulum. Some complex systems have parameter
configurations that behave chaotically, as system that seems to behave relatively

1 The butterfly effect refers to the
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stable can be destabilized by small changes if it an underlying chaotic system is
assumed [13].

Fig. 1. Trajectory of the 2nd weight of a simulated double pendulum

Self Similarity and Levels of Observation. Complex systems often form
from self-regulating processes [14]. The system produces new parts to compen-
sate for changes in the environment, and all other parts react by adapting func-
tions and interactions with other parts. This process leads to structures of self-
similarity, where the whole reflects on the structure of its parts. Depending on the
level of observation (micro-, meso-, macro-scale) other features are prominent,
even though they are governed by the same few rules on the micro level. A con-
sequence of this fractal nature are power-law distributions. Often such systems
can not be described using normally distributed patterns, but require power-law
distributions, as very few components play very important roles, and very many
components play smaller roles in such systems. This makes understanding of such
systems harder, as typical measures of describing data are meaningless in this
context. A mean and a standard deviation have little meaning in a power-law
distributions. Such effects are observed in species differentiation [15], network
topologies [16], language construction [17] and many others.
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2.2 Agent-based modeling

Since such systems are not easily described or understood analytically due to
the aforementioned factors, one approach to understanding complex systems is
simulation. When the rules of behavior of the individual parts are relatively sim-
ple, and the amount of parts and their interactions is still tractable, simulating
the parts can provide means to understanding system behavior.

One approach for such simulations is agent-based modeling. In agent-based
modeling, the individuals and the environment are modeled, their behavior is
predicted from model parameters and output is visualized to facilitate under-
standing. The idea is that each individual agent autonomously decides what to
do next and no centralized control unit influences macro-behavior. Such models
provide a space between empirical methods, that derive knowledge from obser-
vation (induction), and theoretical models, that derive predictions from theory
(deduction). Agent-based modeling is situated on middle ground as it utilizes
theory and transforms it into a model, then executes the model to generate new
empirical data, which can then be studied. The model is generative in nature.
Furthermore, an agent-based model may allow for learning agents. In such cases
each agent tries to create a model of the environment to improve its decisions.
This adds another layer of complexity that can be modeled [18].

Because the data is generated “ab-initio” it is crucial that agent-based models
are validated—either using verification of the model-code or using real-world
data [19]. The challenge for agent-based models is to ensure that the model
actually has relevance for real world settings and is not a meaningless abstraction
of theory, with little value for real-world applications.

A large variety of tools exist supporting the development of agent-based mod-
els. The Wikipedia-page on agent-based modeling compares about 20 different
frameworks. Most famous, due to its approachability is Netlogo [20]. Netlogo
is a tool that allows creating agent-based models using a dialect of the Logo
programming language, which was itself designed to teach kids the basics of pro-
gramming. It adds both user interface components, visualization components,
and analytical tools to the modeling process, allowing reproducible research that
is easy to understand inside Netlogo (see Fig. 2). It further allows batch-running
experiments to investigate not just how a single model behaves—which could be
unstable—but also how a model behaves when changing parameters. One benefit
of Netlogo is that it comes with a model library pre-installed, so that interested
users can immediately start their own experiments.

3 Fields of Application and Model Types

Agent-based models come in as many varieties as one might imagine, depending
on their level of sophistication, field of application, and their disciplinary back-
ground. When we want to understand the interaction of algorithms and human
users, it is necessary to consider these options carefully. For this purpose we look
at two different fields of application, where complexity arises in them and how
agent-based modeling can be used to gain a deeper understanding of these fields.
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Fig. 2. Preferential attachment model in Netlogo

3.1 Social Phenomena and Social Simulation

The first field of application is the field of social simulation. Social simulations
try to increase the understanding of theories and data from sociology covering a
broad range from questions such as friendship relations, inequality, cooperation
behavior as well as questions from opinion forming in the political sphere. Here,
we will focus on the latter.

Research on opinions and how they are spread has been conducted since the
1960s investigating questions of opinion leadership [21]. In this context, theory
differentiates between “leaders” and “followers”. Opinion leaders are the people
in society that others seek out for the validation of their own opinions. Opin-
ion leadership is topic dependent [22] and can be identified using standardized
questionnaires [23]. The opinions of others are often changed in the process of
deliberation [24], where the interaction with opinion heterogeneity affects opinion
forming [25] and increases political awareness. When such deliberation processes
are conducted online, as in social media, only little evidence points towards
similar changes [26]. How is the communication in digital media different?
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One theory from mass media communication by Noelle-Neumann [27], the
theory of the spiral of silence, proposes that people who do not see their opin-
ion on mass media, stop voicing their opinion, leading to further decline in the
presence of their opinion in mass media. In social media, similar processes can
be witnessed [28]. However, this is no simple analogy. Digital media such as
facebook has algorithmic components that affect the structure of communica-
tion. For example, recommender systems [29] are used to recommend suitable
content for users and keep them on the website. Users see and interact with
content they like, and the recommender adjusts the content to what they like. A
positive feedback loop that Pariser [30] called the filter bubble. First results in-
dicate that the filter bubble impacts political opinion forming [31]. Both human
behavior and algorithmic behavior lead to a reduction in diversity of exposure
to opinions [32]. Although modern recommender systems try to overcome the
filter bubble problematic [33], it is unclear how users compensate for this effect.
In this context, many questions arise: Do all users compensate? Do only some
compensate? How does this affect recommendation algorithms? How should a
recommendation engine behave? Should it maximize profit? Should it maximize
diversity?

Such questions become increasingly important with the rise of social bots [34]
and fake news [35,36]. When a certain group of people actively utilizes the biases
in both recommendation systems and humans, influence on opinion forming can
drastically be centralized to a few powerful few. More importantly, these settings
pose threats to democratic order, by increasing the perception of polarization
between different opinion groups.

Similar phenomena have been studied using agent-based modeling. In par-
ticular, phenomena such as homophily, network effects [37], polarization [38]
forming and social differentiation [39] have all their counterpart agent-based
models that help understand these phenomena. However, an integration of the
algorithmic part is still missing and further no model exists that covers both
micro and macro scales.

To fully understand the complexity of the interaction of human and algorith-
mic participants in digital communication, a model that unifies both social and
information theoretic aspects is needed. Such a model would include both human
participants, the underlying network structure, and a model of the algorithms
governing digital communication (i.e. recommender system agents). The under-
lying network structure can also be generated from the agents using preferential
attachment (as seen in Fig. 2 and demonstrated in [40]).

Modeling the user. For the user model, different model types can be consid-
ered, depending on what part of interaction is to be modeled. If the aim is to
understand the spread of rational discourse in networks, a BDI-Model (Belief,
Desire, Intent) of agents may be sufficient to model behavior of users [41,42] and
their personality. However, when the topic becomes irrational as in hate-speech,
affect-based models of communication must be integrated into the agents. For
this purpose different existing theories must be empirically evaluated and an
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approach to convert these to agent-based descriptions is needed. A typical theo-
retical description of such systems are structural equation models, where latent
constructs can be depicted as internal state variables and paths can be modeled
as probabilistic state transformations. However, in this aspect only very little
previous work exists, and model transformation techniques are needed.

Modeling the algorithm. The algorithm model is seemingly simpler. The most
direct approach would be to use the actual underlying algorithm to simulate the
algorithmic participant. However this is, for most cases, not very practical. Real
world data would be needed. It is more fruitful to analyze the behavior of such
algorithms and replicate behavior on a larger scale. A collaborative filtering al-
gorithm could for example be replicated by generating artificial documents with
a limited set of artificial tags, and then randomly assign tag preferences to user
agents. To cosine-similarity could be used to model preferences for users and
documents, and users are then repeatedly exposed to top-ten recommendations.
The abstraction of the model comes from the limitation of articles and the arti-
ficial assignment of topics as tags. For such a model, the algorithm can rely on
ground truth and deviations from optimal recommendations can be observed.
Similar models could be generated for other algorithms such as content-based
models, hybrid models and matrix or tensor-based approaches.

3.2 Cognitive Modeling for Human Factors Research

Another field of complex interaction of humans and algorithms is at work [43].
For example, when users interact with computers the underlying algorithms
of computer programs are used implicitly and rarely with big complications.
However, with the rise of artificial intelligence, Big Data and machine learning,
an increasing amount of opaque algorithms are used in software and hardware
solutions. Opaque in this case means that the algorithm adapts to the user and
the environment, without the user necessarily noticing this adaptation. It is
particularly opaque, if the systems adjusts to the behavior of other users as well
and utilizes this knowledge for all users.

Decision support systems and human factors. One such setting is e.g. a
decision support system that is used to analyze large amounts of data and guide
the user to choose optimal solutions. Such systems are in use in the medical
field, in logistics, in production, and even in programming environments. How-
ever, what if the decision that is suggested is not optimal? How do users cope
with such situations [44]? Such settings arise, when uncommon data is present.
Typically, rare events may lead to situations that the decision support system
might be completely unaware of and thus false suggestions are made. The hu-
man user, who is not limited to data form previous settings, could extrapolate
(or ask a colleague) what could cause such a situation, if s/he notices the de-
flective solution. The risk of blindly following suggested solutions is increased
when the suggestion process becomes increasingly opaque. Further, the better
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the algorithms become the less trained human operators will become in solving
these increasingly rare situations [45].

The interaction of such systems and human factors in this regard is often
investigated using serious gaming environments [46]. Here, factors such as the
decision correctness, the impact of UI interfaces, or environmental behavior can
be experimentally modified to test the influence of these factors on human de-
cision making [47]. Problematic for such experiments is that each experiment
takes relatively long time, needs to be trained adequately by participants, and
only few factors can be modified at a time. If a large amount of factors should
be modified, no human sample could ever run multiple trials in all settings.

For such cases agent-based modeling can be used to simulate human operators—
the human-in-the-loop. So-called cognitive agents derive their internal model
from models of the cognitive sciences [48]. The models try to replicate men-
tal organs and their interactions to produce output that is similar in nature as
human cognition, learning, and behavior. The different cognitive architectures
that are used in cognitive agent modeling are based on different models from
cognitive neuroscience.

Cognitive Architectures. The most famous models in this regard are the
ACT-R, SOAR and Clarion models, which differ in their approach. They are
considered so-called cognitive architectures, which are both a model for human
intelligence and the simulation of this intelligence.

The ACT-R architecture is based on declarative memory and procedural
memory. Procedural rules are derived from declarative memory and perceptual
input and encoded as symbolic representations [49]. The core architecture uses
different buffers for goals, memory retrieval, visual perception, motor-procedures,
and a central executive unit. A plethora of articles exist that utilize ACT-R to
simulate perception, attention, memory, and learning [50]. These simulations
match the behavior of human subjects to a large extent, so that even the evalu-
ation of user interfaces using ACT-R has been successfully implemented.

The SOAR architecture [51] was developed to model general intelligence.
SOAR-Agents try to behave as “rational” as possible, all knowledge that is
applicable to a given situation is evaluated and utilized. For this purpose the
SOAR architecture contains models of procedural memory and of working mem-
ory. Knowledge is procedurally defined as simple rules. For prediction SOAR
uses a problem-space computational model. This means that it tries to model
actions as transformations of problem-state. A problem state is the represen-
tation of the world and the evaluation of this state towards a certain goal. By
applying actions (or rules) to this state, the agent can evaluate whether the ac-
tion brings the agent closer to the goal or not. With each transformation deeper
levels of “thinking-ahead” can be realized for each agent. Soar agents can be
defined as having mutual knowledge and individual knowledge aspects, to simu-
late team behavior and cooperation. This aspect has helped SOAR to be used in
many game-based AI scenarios. Opponents in computer games or military sim-
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ulations can cooperate as teams using team strategies but nevertheless require
an individual perception and action [52].

The Clarion architecture was designed to reflect on two modes of cogni-
tion [53]. It has both explicit cognition, such as planning how to solve a problem,
and implicit cognition, such as assessing the danger in a situation holistically.
Behavior is then generated from four subsystems. The action centered subsystem
stores knowledge about internal and external actions. The Non-action centered
subsystem stores knowledge about the world in general. Both systems have ex-
plicit and implicit representations. The motivational subsystem derives actions
from basic and higher needs (similar to Maslow), which can be formulated as
rules. From these needs the evaluation of actions (internal and external) is con-
ducted and selected in the meta-cognitive subsystem. The latter is used to adapt
goals in accordance with basic and derived higher needs with knowledge of the
world. Clarion is unique, as it allows agents to modify their own goals with re-
spect to their needs. Clarion has successfully been used to model the acquisition
of cognitive skills and complex sequential decision making [54].

4 Discussion

We have seen that complexity arises from the interaction of human and algorith-
mic participants in various fields of application. In social interactions complexity
arises from the underlying social network structure and increases when algorith-
mic participants are included in the picture. In working environments complexity
arises from the application of “smart technologies” such as AI, machine learning,
etc., in working processes. Here, the complexity of the interaction of humans and
algorithms stems from the opacity of the inner-workings of the algorithms—a
lack of understandable AI. Although one could argue, that it rather stems from
the opacity of the inner-workings of human decision making as well. In working
scenarios, AI is typically used to simplify hard problems. While this is successful
most of the time, this approach becomes more complex, when the AI fails or
produces non-optimal output. The interaction of humans and algorithms have
in both cases not been studied extensively to ensure a deep understanding of the
interaction.

For both settings, the utilization of agent-based modeling seems to provide
access to a simulative validation of theories of interaction between humans and
algorithms. The selection of the right modeling approach and validation with
empirical data is critical for an effective use of agent-based models. Depending
on the level of study, different tools and modeling techniques are required. Future
work will have to focus on connecting micro-, meso- and macro-levels, while at
the same time keeping computational performance at a reasonable level.

Finally, one must keep in mind that modeling a system with chaotic behavior
can be modeled using agent-based modeling. However, the insights from these
models are hard to translate to real-world applications. It could be the case that
a models’ only insight is that the underlying system is chaotic in nature. Every
slight change in configuration would lead to drastically different outcomes. The
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benefit of such insight would rather be in evaluating traditional approaches of
understanding such a system. Modeling such a system using traditional static
linear models can be considered futile, if inherent chaotic properties are discov-
ered.

The core benefit of simulation and agent-based modeling in human factors
research is to identify configurations that are probabilistic in nature, that have
stable states, and that have stabilizing environmental influences. Knowing such
influences can be informative for policy making, political decision making and the
design of “smart technologies”. This knowledge should ensure that the intended
goals are at least probabilistically in line with the expected outcomes of the
system design.
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