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Priming and Anchoring Effects in Visualization
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Fig. 1. The exposure to a different stimulus changes the subsequent judgment of separability in a scatterplot target. Means and 95%
confidence intervals of judgments depicted as catseye plots (data from study 4 in this article).

Abstract— We investigate priming and anchoring effects on perceptual tasks in visualization. Priming or anchoring effects depict the
phenomena that a stimulus might influence subsequent human judgments on a perceptual level, or on a cognitive level by providing a
frame of reference. Using visual class separability in scatterplots as an example task, we performed a set of five studies to investigate
the potential existence of priming and anchoring effects. Our findings show that—under certain circumstances—such effects indeed
exist. In other words, humans judge class separability of the same scatterplot differently depending on the scatterplot(s) they have seen
before. These findings inform future work on better understanding and more accurately modeling human perception of visual patterns.

Index Terms—Perception, Anchoring, Bias, Scatterplots, Visualization, MTurk Study.

1 INTRODUCTION

Visual perception is the main epistemic source of information for un-
derstanding our environment. One assumption of visualization is the
consistency of visual perception. Given the same stimulus and the same
person, one should ‘see’ the same thing every time. However, visual
perception is both a top-down and bottom-up process or, as phrased
by Kinchla, a ‘middle-out’ process [30]. Both higher- and lower-order
aspects of visualization affect perception, and prior stimuli might bias
perception and change what is seen.

Human biases play a major role in psychology research. The goal
is to understand the underlying mechanisms that shape ‘irrational’
behavior and if necessary provide means to counteract these biases.
Many biases are shaped by heuristic cognitive processes and their
inherent flaws [60]. Humans, for instance, are known to overestimate
the risk of becoming a victim of violent crime if they have been exposed
to violent shows on television [48]. This mechanism is caused by
the availability heuristic: ‘because I remember crime easily, it must
be prevalent often’. Similar effects are present in other judgments
and can be attributed to the effort to handle noisy input signals [26].
Since visualizations are increasingly used in decision making, it is
necessary to understand how cognitive biases might distort decisions
from visualizations.
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In this work, we focus on priming and anchoring effects, and the
question of how far such effects might play a role in visualization.
Priming effects describe phenomena in which human responses are
influenced by a preceding perceptual stimulus [36]. For instance, par-
ticipants who are asked to complete the word ‘so p’ are more likely
to pick the word soap, when they see a picture of a shower before.
In contrast, participants, who see a picture of bread and butter, are
more likely to fill it with ‘soup’. Anchoring effects, on the other hand,
describe the phenomenon that a previous stimulus provides a frame of
reference, that is, an anchor. This anchor aids judgments, even if the
stimulus is completely unrelated. For example, asking someone the
amount of calories of a carrot, anchors later judgment on the amount
of calories of ice-cream [40]. People then underestimate the latter. Or
even more odd, telling someone the birth year of Mark Twain can affect
their estimation of the length of the Mississippi [42, 65]. Priming is
based on neural pre-activation, that means similar stimuli are recog-
nized more easily, because their neural correlates are already ‘warmed
up’. Anchoring is (presumably) based on priming and describes the
mere effect that judgments might be biased, or ‘anchored’, towards a
preceding stimulus. Based on this line of research in psychology, we
hypothesized that similar priming and anchoring effects might be at
play in ‘low-level’1 perceptual judgments of visual encodings, such as
the judgment of class separability in scatterplots [52]. As a concrete ex-
ample, we were wondering whether an ambiguous scatterplot as shown
in Fig. 1(Target) might be judged differently after seeing a stimulus
with clearly separable classes, as in Fig. 1(A), as compared to a stimu-

1One must note that low-level is here judged from a computer science
perspective. A neuroscientist or perception-psychologist would rate this as
high-level.
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lus with clearly non-separable classes, as in Fig. 1(B). In case priming
effects in visualization really exist, we believe that their impact on
visualization research can be large. Current visual perception models
of patterns such as correlation [21, 29, 46], class separability [5, 54], or
cluster separation [43] assume that human visual judgments are more or
less consistent, and do not take potential biasing effects as the priming
effect into account. In tasks where standardized responses are critical,
controlling for such effects can help reduce variability.

In this work, we set out to make some first steps towards an under-
standing of priming and anchoring effects in visualization. To do so,
we contribute a series of five Mechanical Turk and lab studies with
overall 726 participants, using class separability in scatterplots as an
example task.

Our findings show that both priming and anchoring effects are
present in the repeated judgment of separability in scatterplots. The
effects become detectable at different experimental setups. Anchoring
effects are seen for few repetitions in the experiments, while priming ef-
fects were seen for larger numbers of repetitions. In repeated exposures,
separability judgment was distorted at about 7% from the previous
stimulus.

2 RELATED WORK

Perception has always been a major driver in visualization design and
research. Finding ways to represent data that helps end-users to draw
correct conclusions from visualizations can only be done when we
understand how people see. We need to understand how different repre-
sentations translate to perception, and how perception then translates to
mental representations.

Our goal is to study biases in low-level visual judgments, using the
case of class separability in scatterplots as an example. To contextualize
our work, we first review how perception of such tasks is currently
modeled in visualization. We then provide a brief review of the relevant
background literature in psychology on priming and anchoring effects.

As a full review of the literature is beyond the scope of this article,
we would refer the interested reader to the works of Tversky and
Kahneman [60] for biases, the work of Gescheider [17] for priming
and methodological aspects, or for a more easy read to Kahneman’s
‘Thinking, fast and slow’ [28].

2.1 Modeling Visual Perception
Plenty of work on modeling the perception of different low-level visual
patterns exists. Rensink and Baldrige [45], for example, measured
how correlation can be estimated from scatterplots, using adaptive pro-
cesses to detect just-noticeable differences (JND) between scatterplots.
Furthermore, Rensink found that judgments of scatterplots are less
influenced by the shape of the dot cloud, but indeed more by the shape
of the underlying probability distribution [47].

Using crowd-sourcing, Harrison et al. [21] matched nine visual-
ization types of correlation data to their judgments, finding that the
just-noticeable difference can be modeled using a Weber-Fechner Law.
This means, for example, that two scatterplots can be judged as different
more easily for more pronounced levels of correlation. The difference
from r = 0.9 to r = 0.85 is more easily detected than the numerically
same difference of r = 0.1 to r = 0.05. However, this depends on
the direction of correlation and the type of visualization. Building on
that work, Kay and Heer [29] argue that this model, however, does
not include individual differences of perception. Using Bayesian esti-
mation, they were able to refine the model to include such individual
differences. However, they also find that scatterplots show very little
inter-individual differences, that is, low variance and high precision.

Another low-level task that has gained considerable attention in
the visualization literature is visual class separability in scatterplots.
This is also the task we are focusing on. Conducting a qualitative
analysis of 816 scatterplots, Sedlmair et al. have characterized different
visual factors that are at play in the perceptual separability of color-
coded classes in scatterplots [52]. Building up on this work, Aupetit
and Sedlmair [5] modeled the human perception of class separability
with different neighborhood graphs and purity functions [5]. Their
approach, however, is based on modeling only clear-cut cases, that is,

scatterplots that are either labeled clearly separable or non-separable
by humans [50]. Borderline cases were excluded in the design and
evaluation for simplicity reasons. Our work focuses exactly on these
borderline cases, with the goal to better understand how reliable human
judgments are for those, and in how far they are prone to perceptual
biases.

Much other work exists that focuses on aspects that relate to models
of visual perception. Lewis et al [32], for instance, looked at more
coarse-grained differences between expert and novice judgments in
class separability tasks. They found that while humans often disagree
with automatic quality measures, class separation seems to be a task,
that can to a large extent be solved by novices. This finding supports,
for instance, our choice of using crowd-sourcing to conduct some of
our studies. Others have investigated the limits to visualization. Haroz
and Whitney [20] looked at how attention capacity limits visualization.
Micallef et al. investigated the limits of humans in terms of Bayesian
reasoning abilities [37], while Armstrong and Wattenberg looked at
potentially incorrect conclusions that humans might draw from mixing
effects [3]. All these papers share with us the idea of investigating
specific aspects of the human perception and cognition that are relevant
to visualization design and usage.

Having good perceptual models of the human visual perception can
be useful in different ways. Generally speaking, they either can be
used to infer which visualization is most helpful given a certain set
of data, or they can automate the process of setting parameters of a
specific form of visual encoding. Many examples exist, such as finding
good parameters for scatterplot visualizations [38], aspect ratios [58],
multi-table views [33], and other types of visualizations [64]. Another
viable line of work is using such perceptual models to find interesting
projections of high-dimensional data that reveal perceptually relevant
aspects in data. One example for this approach are the scagnostics
measures that model human perception of certain visual patterns in
scatterplots [63], but many others exist [5, 6, 43, 54]. Sacha et al.
propose to compare these perceptual measures with measures on the
actual data [49]. If both measures agree, it is a good sign that the
patterns ‘really’ exist (or not). Along similar lines, Kindlman and
Scheidegger [31] provide an algebraic model to understand which
transformations are invertible and which ones follow invariates. Ideally,
we can assure that changes in data are also reflected by changes in a
resulting visualization that humans perceive.

2.2 Biases in Visual Perception
While modeling perception is common in visualization, to the best of
our knowledge misjudgment has not yet been addressed in repeated
usage of such visualizations. Typically, repeated-measures designs, or
stair-case procedures [17] are used to reduce the effect of ordering on
judgment. Nevertheless, systematic effects, or biases, might exist.

In order to understand biases, one must look at the long history of
research on such effects in psychology and visual perception. One
of the early researchers interested in how perception is affected by
prior experiences or context is Harry Helson [24]. In his 1947 APA
article [23], he showed how different intensities of perception, such
as weight or illumination, are evaluated against different levels of
perception. Between two different judgments (heavy vs. light, bright
vs. dark) there is a neutral zone, the adaptation level. The location
of this zone is, however, affected by context. Stimuli may ‘anchor’
perception and thus bias judgment. This type of bias can be assumed to
exist purely on a perceptual level. On higher levels of cognition, other
biases exist that may also affect judgments.

Tversky and Kahnemann famously investigated decision making
under uncertainty [60]. They used biases to understand the heuristic
decision-making processes underlying these biased judgments. One
famous cognitive bias is caused by anchoring. Anchoring describes
the phenomenon that a given stimulus affects later judgments in the
direction of the previous judgment, even if both stimuli are completely
unrelated. A vivid example lies in the following experiment: When
asked whether the age of Gandhi at his death was higher or lower than
9 years, the average guess of his actual age at death was lower than
when asked whether his age was lower or higher than 141 years [56].
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Table 1. Study overview: main results and samples before and after data cleaning (e.g. speeders, outliers)

Study Main Result Sample Used

Pilot 1 Unclear separability in SepMe [5] possibly evokes priming biases. 200 180
Pilot 2 Task: Identified target stimuli with high uncertainty. 47 43
Study 3 Clearly separable stimuli cause priming on subsequent unclear stimuli. 251 196
Study 4 A single stimulus causes anchoring effects on later judgments. 351 243
Study 5 In repeated exposure, every single stimulus primes subsequent judgment. 64∗ 64†

∗35,105 individual judgments, †28,544 individual judgments

Although both numbers are clearly wrong2, both influence judgment by
‘anchoring’. While ‘anchoring’, as a result from the behavioral sciences,
is descriptive in nature and explains judgment bias direction, towards
the anchor, it gives no reasoning of why such an effect exists though.

Priming on the other hand is a result from the cognitive sciences [36,
59]. It refers to the phenomenon that a target stimulus is more easily
recognized when it has been activated beforehand. Early models of
priming consider it a memory effect [59], while modern neuroscience
research follows a model of neural pre-activation [27]. Priming happens
unconsciously, and is relatively independent of episodic and semantic
memory. For example, priming works with amnesia patients, and under
the influence of drugs. Even though it is often considered a perceptual
effect, also semantic and conceptual priming exists. Priming effects are
more pronounced when participants are unaware of priming [57], less
motivated [34], and when primes are more extreme [25].

Both priming and anchoring are related to one another, yet crucially
different. While anchoring seems to be a consequence of priming [41],
it does not solely rely on the mechanisms of priming. Priming is
relatively fragile, while anchoring is relatively robust [65]. This means
that an anchoring occurs even when the effect is made known to the
participant. The reasons seems to be that anchoring occurs because
the participant generates a hypothesis at the anchor—with the help
of priming—and then tests against the already anchored hypothesis.
This self-generation effect [41] also leads to the underestimation of the
effect of an anchor on judgments by the participants.

In our work, we are interested in studying both anchoring and prim-
ing effects more thoroughly from a visualization design and research
perspective. Specifically, we take an application-driven view and study
their potential presence and impact using the example of scatterplots
and the task of class separability.

3 OVERVIEW

In order to investigate the presence of priming and anchoring in class
separation tasks, we conducted five experiments. Each of the exper-
iments serves a different purpose in identifying whether and how a
stimulus affects judgment in later decisions. The first two studies pro-
vide the overall hypothesis and the stimuli for the later studies; study 3
and 4 try to separate the two possible bias effects and study 5 measures
the strength of the priming effect (see also Table 1). Studies 1, 3, and 4
were conducted with Amazon Turk. Further details of the studies are
depicted in the following sections.

3.1 Focus and Justification
Classical experiments in finding priming effects utilize subliminal ac-
tivation (stimulus onset asynchrony < 100ms) [61]. This ensures that
no conscious evaluation affects the judgment. In contrast, classical
experiments in finding anchoring effects explicitly make the anchor
visible and might even tell the participant to ignore it. These types of
setups focus on carefully separating the effects from each other.

On an application level, however, effects are not isolated and might
even have compounding effects. What we are interested in is the
amount of error introduced by such effects in a task that is relevant
and at least structurally similar to a real world task. Our goal with this
application-driven choice is to increase the ecological validity, while
we necessarily need to accept trade-offs in terms of precision [35].

For our studies, we chose class separability of scatterplots as an ex-
ample task. Class separability provides enough uncertainty, so humans

2He died at the age of 78.

have to rely on heuristic judgments and cannot calculate the optimal
solution. It also has been shown to be a task where humans are quite
capable [18, 32], so we do not measure random effects. These two
conditions allow measuring biases and provide a meaningful field of
application. We also have worked on this task in our previous work,
during which we first hypothesized about the potential existence of
anchoring and priming effects [5, 50–52].

3.2 Five Studies and Main Results
The five experiments were conducted between summer 2016 and spring
2017. The first experiment started from a design that was very close to
application level, with real world data and several judgments. It was
a starting point to investigating priming effects in cluster separability
tasks. As effects were unclear, we continued to control variables more
strictly in order to isolate the effect. The second study served to select
more appropriate stimuli. We found that the distance of centroids is a
good predictor of separability judgment, and based on this, picked three
stimuli at both ends and the middle of the scale. Study 3 was intended
to measure the effect of priming using the previously selected stimuli
in a setup with very few stimuli. This setup was selected to reduce the
error due to repeated exposure. Since anchoring effects might occur
from training tasks, we removed the two training tasks for study 4. This
study then found that a single judgment of separability works as an
anchor to following judgments. Whether this was due to priming could
not be determined. To answer this question, we designed a fifth and
last study with a large number of tasks per participant to measure the
effects of priming and anchoring in repeated experiments. We found
such effects and found that they influenced judgment at about 7% of
the strength of the current stimulus.

3.3 Experimental Procedures
Setup All experiments were conducted using web-based surveys

(i.e., SurveyMonkey and Limesurvey) or self-coded web tools (PHP,
JavaScript). Participants of studies 1, 3, and 4 were recruited using
Amazon’s Mechanical Turk. Unfortunately, because Turkers worked
more slowly than expected, they were effectively paid 2.50$/hour,
which is less than we intended (we encourage future studies to use
national minimum wages as a guideline). The amount of payment is
an experimental factor chosen at a very low level. To not vary this
influence, we did not change the amount of payment during the studies.
However, due to the ethical implications of the cumulative effect of
such procedures we further used the MTurk Bonus system to increase
payment after the studies to $7.25. Participants of studies 2 and 5 were
recruited from students and employees of our local universities.

Data Cleaning Since we partially crowd-sourced the experiments,
it is necessary to remove speeders and participants that did not take the
studies seriously or misunderstood the task description. Afterwards, we
should gain reliable data [22]. For this purpose we removed participants
that matched the following criteria: Participants who (1) chose only
one level of separability across all trials; (2) reverse coded the results,
that is, high separability with centroid distances of 0; (3) coded clearly
different stimuli equally; or (4) took less than 100ms per task.

Statistical Analysis We take an exploratory approach and analyze
the resulting data based on effect sizes, with 95% confidence intervals as
recommended by APA [2]. Note, that we specifically refrain from using
null-hypothesis significance testing (NHST), which has shown to yield
problems, such as over-interpretation of p-values [13, 53]. For studies
1–4, we report means of judgments as point-estimates with 95%CI.
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Fig. 2. Method overview of pilot study 1. Participants did either go into condition A (black) or B (green), conducting 18+12 judgments. Priming stimuli
from the three-stimulus-trial sets 1 and 2 were the same, but switched between groups—same for set 3 and set 4.

Different ways of interpreting them are discussed by Cumming [13].
Study 5 differs from this approach in that we use a regression model
approach. Specifically, we seek to predict human class separability
based on the distance between two class centroids. We then analyze
how much impact the previously seen stimulus has on the accuracy of
this prediction.

3.4 Hypothesis
We generally hypothesized that priming effects and thus lastly also
anchoring effects are present in repeated exposure to visualizations,
similar to Mochon and Frederick [40]. Seeing a certain set of data
visualized, should influence judgments on a later set of data visualized.
Typically this is not desired.

4 FIVE STUDIES

In the following, we describe the five studies that we conducted in
chronological order. For each study, we briefly outline necessary details
of the experimental design, and discuss the main results.

4.1 Pilot Study 1 – Measuring Bias in the SepMe Dataset
The initial idea for studying biasing effects in scatterplots arose when
looking at stimuli from the SEPME dataset that was used in several
previous studies [50–52]. This data contains 816 scatterplots, with
overall 5,460 classes. Each of these classes comes with a rating of two
expert judges on a 5-point scale from clearly non-separable to clearly
separable. After looking at many these plots, the intuition arose that
judgments of ‘unclear’ cases depended to some extent on the decision
made before. The initial hypothesis was, that each stimulus, that is, each
scatterplot, biased the subsequent judgment as it primes the decision in
one direction. However, it was unclear to us, to what extent, in which
direction, and by which means.

Experimental Design To understand this effect, we designed an
experiment that would measure the effect of priming in consecutive
judgments. In order to set the stage for this effect, we asked participants
to first judge 18 training stimuli in regard to separability. We carefully
handpicked training stimuli that showed clear congruence in the existing
expert judgments. So they were either clearly separable or clearly non-
separable according to both judges. For training, these 18 stimuli were
presented in an order that switched between clearly separable and non-
separable stimuli in each turn. Since another bias in range judgments
is known from frequency range theory [44], we used this procedure to
establish a baseline frequency for all possible judgments. After these
18 training stimuli, we presented four sets of three stimuli (see Fig. 2),
where the last stimulus was the target stimulus, while the first two were
priming stimuli. Sets 1 and 4 should measure the priming effect, while
sets 2 and 3 should control the non-existence of the effect in clear-cut
cases. All priming stimuli, as well as target stimuli 2 and 3 were rated
congruently by the expert coders. In contrast, target 1 and target 4 had
different ratings from the expert coders, which were unclear stimuli.
In order to prevent effects of ordering we randomized the sample in

two conditions (A=black and B=green) and changed the order of the
4 tasks. As in the original study by Sedlmair et al. [51], separability
was measured on a 5-point Likert scale (clearly separable, separable,
unsure, non-separable, clearly non-separable). 200 participants took
part in the Amazon Turk study, 180 remained after data cleaning.

Our hypothesis for this study was that seeing two consecutive stimuli
of the same ‘type’ (separable or non-separable) will affect the judgment
of the consequent ‘unclear’ stimulus. However, it should only apply to
unclear stimuli (target 1 and 4). No effect was expected for clearly rated
stimuli (target 2 and 3). This setup was most similar to our process of
browsing these data manually before.

Results We could find some priming effects for the targets 1 and
4 (see Fig. 3). However, the results were not as clear as we hoped for.
While target 1 did show a small difference in means, no clear difference
was found for target 4. There is a hint of difference for this target,
however, such differences also occurred during the training trials for
early stimuli. As expected, no effect occurred for target 2 and target 3.
Participants took about 8 minutes for the task.

From this experiment we have learned that some type of ‘priming’
effect might exist (see Fig. 3, target 1), However, changing both priming
and target stimulus for the repetition in the same condition could have
lead to a reduced effect or no effect at all (see Fig. 3, target 4). So we
have conflicting evidence in the same experiment. Target 1 shows a
small priming effect, while target 4 hardly shows an effect.

We also do not know how the 18 training tasks might have affected
the judgment process overall. In this study we chose two priming
stimuli and thus also included repetition priming [27] into the equation,
possibly overemphasizing the effect. From these results we decided to
generate new stimuli that removed some of the variance introduced by
the different shapes of stimuli chosen for the individual conditions.

4.2 Pilot Study 2 – Finding Target Stimuli
The stimulus set in study 1 consisted of stimuli of varying degree in
density, dot counts, clumpiness, shape, etc. [52]. This allowed for too
many uncontrolled variables in our design, possibly affecting judgment
and masking conclusive effects. As we do not expect to see very large
effects, we try to avoid this by finding more homogeneous stimuli.

To better control for such confounding factors that might mask
effects, we decided to reduce the task to separating a simple set of two
almost identical point clouds. We thus opted for only varying a single
variable, class distance, as the single most important factor indicated in
Sedlmair et al.’s taxonomy of class separation factors [52].

The idea was now to generate stimuli procedurally and select stimuli
that were in line with the experimental design of study 1. The priming
stimuli should have congruent judgments; the target should be unclear
and in the adaptation-zone. The sole purpose of the second study was
to identify three stimuli that follow these requirements and that can be
used in the following studies.

Experimental Design As in study 1, each stimulus contained
two different clusters. Each of these point clusters was generated
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Fig. 3. Results of pilot study 1: Catseye plots show 95% confidence
intervals (CIs) for the mean ratings of the two conditions, only for the
targets. Target 1 shows a difference between conditions and target 4
shows hints of differing judgments between conditions.

from a bi-variate distribution (SDx = 1, SDy = 1) using 200 samples, a
choice we made based on our previous experience working with class
separability in scatterplots [5, 50–52]. Cluster distance is calculated
as the euclidean distance of the centroids of the clouds. Distances
were randomly chosen from the domain [0;4] standard deviations. As
a sampling method for normally distributed random data, we used
the Box-Muller-Transformation (BMT). BMT is a fast effective algo-
rithm for generating Gaussian distributions [7]. Since it was used in
JavaScript and speed was an issue, this algorithm was chosen. Coloring
was assigned randomly to create two groups (red/blue and blue/red) for
the same cluster data.

Participants conducted 2 training tasks, before we asked them to
judge 50 trials of randomly generated cluster data (see. Fig. 4). Each
participant saw the same set of random stimuli in the same order as
stimuli were generated using a fixed random-seed. The study was con-
ducted with 47 students from the field of Digital Media Communication
and Computer Science, 43 remained after data cleaning. 5-point separa-
bility judgments could be submitted by keyboard, allowing individual
judgments to be performed relatively quickly. Participants took on
average 2.5 minutes for the task.

Results To identify three representative and good stimuli, we
analyzed the stimuli by looking at the variance and mean of judgments,
as well as the histograms of judgments. As priming stimuli, we picked
one that showed very clear separability (Sep, distance = 2.92 SD), and
one which was rated as very clearly non-separable (NSep, distance
= 0 SD). As a target stimulus, we picked one with a medium rating
and a large variance, indicating (uncontrolled) disagreements between
participants (Target, distance = 2 SD). All three stimuli can be seen in
the Fig. 4 and their histograms below.

4.3 Study 3 – Measuring Priming Effects

After finding good stimuli in study 2, we sought to better isolate the
possible priming effect with a very short and clear study procedure.
Participants were only shown four stimuli: Sep then Target (T), and
NSep then T again (reverse order for the other group). Our hypothesis
was that after judging the separability of a single point cloud that is very
clearly separable (Sep), the judgment of an unclear stimulus (T) is bi-
ased towards the previous judgment, namely separability. Analogously,
after seeing a clearly non-separable point cloud (NSep), we expected
the preceding judgment of T to be primed towards non-separability. In
doing so, we sought to reduce the impact of the (previously 18) training
stimuli on the target judgment.

Experimental Design In order to control for ordering effects,
all participants were randomly assigned to one of two groups either
starting in the non-separable (here A) or separable (here B) condition
(see Fig 5). To reduce the influence of the first ‘priming’ stimulus on
the second trial, we also needed to introduce a masking task. In this
task, participants had to judge five random network graphs in regard to
‘attractiveness’ and ‘complexity’. This task was designed on purpose to
take the largest amount of time of the whole study. The task took on
average 2 minutes, vs. 15 seconds experimental task.

In contrast to the previous studies, we asked participants to rate the
separability of the target using a slider with no tickmarks or reference
numbers. As we only measure four judgments per participant in this
study, a 5-point Likert scale would have masked any subtle within-
subject effects. Given that we only expect small effects, everybody
would have likely defaulted to the same value, for instance ‘3’, again.
Instead, we were interested in seeing whether one single person would
judge the same stimulus differently after two different ‘priming’ stimuli.

This study was conducted using Amazon’s Mechanical turk (n =
251). After removing speeders as described in section 3.3 a set of 196
participants remained in the sample.

Results Study 3 yielded two interesting results. First, we did see
a difference in means in the second target between subjects, as this is
visible by comparing the green and black fisheye at target 2 in Fig. 6
(left side). So being in a different condition did affect judgment to a
certain extent. However, no such difference was present for target 1.
The means are in fact very close to each other. The group depicted in
black that started with a non-separable stimulus also showed a within-
subject difference between the identical target 1 and target 2. The
other group depicted in green, however, showed no such difference (see
horizontal lines in Fig. 6, left side). We concluded that the training
task, which was one clearly separable and one clearly non-separable
stimulus in that order, likely already had affected the initial judgment.

This finding becomes obvious when looking at stimulus 1 from the
black group. The variance is lower than for the green group, who
saw this stimulus after the masking task (see Fig. 6, stimulus 2, green
catseye plot). This could be, because the black group saw a very similar
stimulus as a training task right before judging this stimulus. The same
effect also shows up in the differences between the separable stimuli
between both groups. The green group shows a bigger variance in their
judgment at stimulus 1 than the black group at stimulus 2. Yet, the
green group just saw an example of a clearly separable stimulus in the
training task, which showed point clouds even further away than the
stimulus shown during the experiment. This could mean that the effect
of the training was present in both groups, but in different directions.
It moved both non-target stimuli to the center for the green group and
moved both non-target stimuli to more extreme judgments for the black
group. While some sort of effect seemed to be present, the very strong
agreement of both groups at Target 1, was surprising.

From these results, we hypothesize that some sort of priming seems
to be present, however our training tasks could have themselves affected
the judgment of the stimuli. This hinders clear conclusions about
priming effects. Instead, we can say that an anchoring effect might
have been at work here as well. The training tasks anchor the extrema of
the judgments thus affecting judgment at trial 1, increasing the certainty
for the black group and lowering the judgment for the green group.

4.4 Study 4 – Removing All Training Tasks
In order to also remove the effect from the two training tasks, we
conducted a fourth study.

Experimental Design Study 4, which is also shown in Fig. 5), is
almost identical to study 3. It only differed by skipping the two initial
forced-choice training tasks, as we could not ensure that these two
training tasks would act as ‘priming stimuli’ for our targets. This study
was also conducted using Amazon MTurk (n = 351). After removing
speeders, a set of 243 participants remained in the sample.

Results Fig. 6 (right side) shows the results of study 4. As study
4 is very similar to study 3, the interpretation of results is also very
similar. However, the actual results in this setting are different. The
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Fig. 4. Method overview of study 2: Participants were asked to rate the separability of 50 stimuli on a scale of 1 to 5. Thee three most fitting stimuli
are depicted on the right.

Fig. 5. Method overview of study 3 and 4. The studies differed in either having or not having two training tasks. The masking task was chosen, as it
was similar (look at points, set sliders), but could not be a prime (only one cluster).

within-subject effect of the black group disappeared for both targets.
In contrast, the between-subjects effects are much more pronounced
at all stimuli-locations. The green group clearly rates separability of
all stimuli lower than the black group. Interestingly, judgments of the
same non-target stimuli also show differences between both groups. For
example, the stimulus 1 of the green group is judged as less separable
than stimulus 2 of the black group (same stimulus). It seems to be the
case that the first stimulus anchors judgment so strongly in this setting,
that no priming affects the judgment of target 2. Another explanation
could be that the participants remember the target stimulus and pick a
similar value as before.

We conclude from this experiment that anchoring effects are present
in separability judgments and do indeed affect judgment of later scat-
terplots. This might nevertheless have been caused by the short exper-
imental frame of only 4 judgments. The participants could not have
established a consistent frame of reference as predicted by frequency
range theory [44] and adaptation level theory [23]. Therefore a frame
of reference is chosen at the first stimulus and then mapped to the
consequent ones. This however would mean, that priming effects in a
narrower sense would not be at work, as no within-subject effect can
be seen.

4.5 Study 5 – Prediction of Rating Judgment

Since both studies 3 and 4 yielded partly conflicting results, we decided
to conduct a fifth study. Study 3 indicated a priming effect exists,
as the same participants (in this case the black ones) rated the same
stimulus differently depending on the priming stimulus. However, it
was inconclusive, as the other group showed no such effect (the green
ones). There should be no anchoring effect detectable between groups,
as both groups saw the same training tasks to “calibrate” their judgment.
Study 4 showed no such difference (i.e., no priming effect), but a strong
difference between the groups. This difference can be interpreted as an
anchoring effect, as the strong difference in the first stimulus acts as an
anchor for rating all following stimuli in respect to this first stimulus.

Since there is no training stimulus, the rating task is now “calibrated”
with respect to the first stimulus.

In order to find out whether within-subject effects, and therefore
priming effects, do still occur, we decided to conduct a study that was
in stark contrast to study 3 and 4. While studies 3 and 4 relied on many
subjects and few judgments, study 5 does the opposite. The purpose
was to detect the effect of priming in a long series of judgments. In
this setting we can go back to 5-point ordinal judgments, as multiple
judgments are made for each individual. These are quicker and facilitate
the “many judgments per participant” design.

The hypothesis is that priming effects do occur in long term usage
of visualization. We measure this by regressing the judgments of
participants. Our goal of this regression is to predict the judgment
of participants from the distance of the two class centroids. Large
distances should lead to separable judgments, low distances to non-
separable judgments. We now can build two models, one which only
uses class distances, and one that uses current class distances and the
previous class distance. If the latter one explains more variance, we
can conclude that priming effects are present. A method to compare
two models with different parameter counts (i.e., one parameter for no
priming effects, two parameters for priming effects) is the AIC (Aikike
Information Criterion) [1]. This criterion evaluates the increase of
explained variance or more precisely the decrease of residuals against
the additional use of parameters3.

Experimental Design The setup of this study was derived from
study 2 by extending it to maximum 1,000 trials. Participants were
asked to judge separability of randomly generated point clouds (see
Fig. 4). Only this time, the study would not stop after fifty trials,
and was conducted with researchers and students with experience in
visualization or HCI: eleven colleagues from the authors, and 53 HCI
students from University of Vienna, all unfamiliar with the experimental
design. No rewards were given to colleagues. Students could select

3One can always increase the explained variance, by adding more parameters
to a model. The AIC aims to control this by penalizing against more parameters.
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Fig. 6. Left: Catseye plots of mean judgments of study 3 (n=196). A within-subject effect can be seen for the black group, and a between subject
effect at Target 2. Right: Catseye plots of mean judgments of study 4 (n=243). No within-subject effect can be seen for either group, yet a between
subject effect is present at both targets.

this task as a voluntary homework and gather extra points for class. We
asked 64 coders to judge as many randomly generated plots as their
concentration would allow. The coders were asked to take a break every
15 minutes and only judge as long as they felt they were not making
mistakes.

Results The 64 coders rated a total of 35,105 visualizations (7,257
removed as outliers). All first (one for each coder) ‘non-primed’ stimuli
were then dropped. Only 10% of all judgments were rated as ‘unclear’
(see Fig. 7). Most judgments were rated as clearly non-separable
(n=8,634).

In order to understand the effect of priming in so many judgments we
applied regression modeling to the judgments. We used both linear re-
gression and ordinal logistic regression to compare both models. Since
judgments were done by key-presses (from 1 to 5), ordinal regression
is the more accurate fit, but linear regression is easier to understand.

For linear regression models we report coefficient estimates with
standard errors, t values and probabilities of parameter estimates. We
report adjusted r2, degrees of freedom and Anova results (F-Measure,
p-value) to compare the model against a simple mean-model. For the
ordinal logistics regression, we provide coefficient estimates, standard
errors and t-values for coefficients as well as intercept estimates stan-
dard errors and t-values for individual level changes. To provide a more
meaningful interpretation we also provide odds-ratios for level changes
including 95% confidence intervals.

A multiple linear regression model using both centroid distances,
the current and the previous stimulus or simply CDistance and
PDistance, yielded a good model fit (F(2,27845) = 22,510, p <

2.2e−16). The residual standard error was 0.8943, multiple r2 = 0.6179
and adjusted r2 = 0.6178. The strongest predictor was, as expected,
the current centroid distance. The intercept was near 1, as expected.
The intercept refers to the judgment that is picked for a distance of zero.
It should be near 1, as our judgment scale started at 1. The model then
predicts a user’s rating as follows:

rating = 0.613+0.996×CDistance+0.073×PDistance

That is, each unit of increased distance, increased separability by
approx. 0.996 (on the limited scale from 1 to 5, see Tab. 2). The distance
of the centroids in the previous stimulus increased the separability by
approx. 0.073 for each unit in difference. Both predictors improve
model fit. This indicates that a priming effect exists. However, one
must consider that several assumptions are violated in this approach.
The error is not normally distributed, as the scale is limited, and the
distance is limited by zero.

To overcome the limitations of linear regression with ordinal data,
we applied ordinal regression. Here, we want to predict the likelihood
of an ordinal judgment of a participant (1, 2, 3, 4, 5) from the distance of
the centroids of the clusters in the current and previously seen stimulus.

Table 2. Coefficients of Multiple Linear Regression Model using two
predictors, rounded to three decimal places. (CDistance = distance of
both centroids, PDistance = Distance of centroids in previous stimulus)

Estimate Std. Error t value p value

(Intercept) 0.613 0.014 44.49 < 2e−16
CDistance 0.996 0.005 211.80 < 2e−16
PDistance 0.073 0.005 15.45 < 2e−16

So if we know the current clusters are 1 unit apart, and the previous
ones are 3 apart, we can calculate the odds for each judgment on the
ordinal scale. We again use two models. A one- and a two-predictor
model to estimate the effect of the priming stimulus. The first to model
no priming, the second to model priming. The resulting model with
two predictors yielded a residual deviance of 59,708.84 and an AIC of
59720,84 (see Tab. 3).

This means that each increase in the current centroid distance of
one unit increases the likelihood of picking a higher judgment with the
odds of 7.94 (i.e., an increase of 694%). Furthermore, this means that
each increase of centroid distance in the previous stimulus increases
this likelihood of picking a higher judgment with the odds of 1.18 (i.e.,
an increase of 18%). Tab. 4 shows also the confidence intervals.

Table 3. Coefficients and Intercepts of Ordinal Regression Model using
two predictors

Coefficients
Value Std. Error t value

CDistance 2.072 0.016 127.20
PDistance 0.170 0.010 16.19

Intercepts
Value Std. Error t value

1—2 2.602 0.035 73.438
2—3 4.641 0.044 105.301
3—4 5.439 0.048 114.349
4—5 7.764 0.058 134.166

Residual Deviance: 59,708.84, AIC: 59,720.84

According to the AI-criterion [1], a model without the previous
stimulus difference as a second predictor is inferior (AIC1Pred =
59,9982.24 > AIC2Pred = 59,720.84). According to Burnham & An-
derson [9], this means that the model with priming is 2.9e56 times
(= e((AIC1Pred−AIC2Pred)/2)) more likely to explain more information than
the model not assuming priming.
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Fig. 7. Kernel density estimation using the Epanechnikov kernel of all judgments plotted by judgment category.

Table 4. Odds ratios from the observed information matrix after optimiza-
tion of ordinal regression model using two predictors

Odds Ratio Lower CI Upper CI

CDistance 7.942 7.693 8.200
PDistance 1.185 1.161 1.209

We conclude from these models that priming effects do occur in
repeated class separability tasks. Since stimuli were generated in ran-
dom order such a consistent effect of the previous stimulus can only be
explained by priming. Anchoring effects would diminish over the trials,
as both separable and non-separable anchors occur randomly through-
out the experiment. However, a compound effect can not be totally
ruled out. The strength of priming is relatively weak, as expected, but
consistent and dependent on the size of the prime.

5 DISCUSSION

In our research, we found evidence for the existence of priming and
anchoring effects in class separation tasks of bi-variate normally dis-
tributed scatterplots. This means—ceteris paribus—that deciding
whether two clusters are separable, does not only depend on how far
they are apart, but also on how far previously seen clusters are apart. In
other words, the dynamics of repeated exposure to a visualization does
play a role in their interpretation.

In this section, we will put our findings in context to how previous
research has looked at biases and related effects. We will then revisit
our choice of addressing this research question from an application-
driven angle, by starting from an experiment that was close to the
application level, and gradually removing confounding factors. Our
approach has some drawback and caveats, which we will discuss and
evaluate. We also propose how to address some of these limitations
and outline where new opportunities of future work can be derived.

Relation to Previous Work Our work focuses on better under-
standing temporal effects of repeated exposure to visual stimuli, such
as priming and anchoring effects. So far, the lion’s share of perceptual
visualization research has focused on contextual factors that are present
simultaneously. For example, Webster and Leonard [62] looked into the
effect of how the context affects the perception of the color white. They
found that on a very low-level of perception the color white is adjusted
to the surrounding colors. The perceptual system performs an ‘auto-
white balance’ depending on the visual context. To our knowledge,
there is much less work on how previous exposure to a visualization
affects perception, and the biases that might stem from looking at se-
quences of visualization stimuli. Utilizing the same visual encoding
over and over again is not uncommon in real-life applications. In terms
of scatterplots, think for instance, of using the venerable approaches of
projection pursuit [15], or grand tours [4].

Another source of interesting related effects stems from inter-
individual differences. The need to model such effects is obvious,
as different people might see the same thing differently. Previous

work [12,55] has shown that the inclusion of inter-individual differences
can add another source of systematic ‘errors’. Adapting a visualization
and correcting for such individual human factors (e.g., perceptual and
cognitive abilities [11], personality [19], technological affinity [8, 19])
can help users make better decisions. For example, users with higher
cognitive processing speed were found to be more effective at deriving
facts and insights from a visualization than others [11]. Such inter-
individual differences become even more important when tasks become
more complex [39]. A quick glimpse into judgments in our study 5 hints
at relatively large and systematic inter-individual differences. Some
users prefer to pick only values at the higher end of the scale, while
others pick only in the lower end of the scale, while yet others leverage
the full scale. Although our investigation of priming and anchoring
effects is robust against such inter-individual differences, it poses many
interesting open questions for future work: Are these inter-individual
differences caused by choice or perception? Do different rating ‘styles’
relate to different personal traits [10]? Do different users require dif-
ferent counter-measures to prevent misjudgment caused by priming or
anchoring?

Studying Biases from an Application-driven Angle The focus
of this article lies in applying an application-driven methodology to a
low-level phenomenon. With our research, we also wanted to demon-
strate this methodological approach and that it can be used to study such
biases from a more application-driven lens. The general methodology
to detect priming effects already exists since the 1950s. So far, such ef-
fects have only been studied under highly-controlled conditions though,
leaving a large gap to actual applicability and ecological validity in
real-world tasks. One could ask whether millisecond differences in
stimulus recognition matter for decision making using visualization.
The question we aimed at is whether these effects accumulate and
leave a measurable amount of error. For this purpose, our methodology
tries to bridge the higher-level perspective on priming from a neuro-
psychologist’s view with a low-level perception view of a computer
scientist. Starting form an application-driven perspective with real-
world data, we increased the level of control in our experiments step by
step, until we arrived at a level of abstraction that allowed us to isolate,
detect, and quantify such biasing effects. Of course, this approach
comes with its own caveats, as every methodological choice needs to
make certain trade-offs [35]. By following a more application-driven
approach, we specifically open our results to other types of interpreta-
tions. One could argue that, e.g., our effects could have been caused
by the random generation of stimuli (studies 2–5). The effect could be
exclusive to the stimuli we used and not depend on the regressed vari-
ables. The normally distributed error in this process, should however
cancel out in longer studies, such as study 5. The effects could also
have been caused by the individuals that chose longer exposure times,
or the effect could have been governed by accidental mis-judgments.

Still, we believe that our interpretations do make sense in the light of
theoretical explanations from the psychological models. There should
be an effect of priming and there should be an effect of anchoring, if
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the theory [36, 59, 60] is correct. The size of the effect is arguable,
and needs further dissection, but this is where our research provides
a starting point. The experiments conducted for this article serve as
a base-line with relatively ‘normal’ parameters (i.e., 200 data points,
2 clusters, bi-variate normally distributed clusters). We picked these
parameters from previous work [5, 50–52].

We also believe that by reporting all five studies including the first
relatively inconclusive study, we allow the reader to understand how
such an approach can be applied to different types of visualizations and
biases. Simply reporting the last study, might be sufficient for providing
evidence for the effect, but following the process shows how studies
have to be adopted to separate effects and thus estimate their influence.
It also helps to avoid known methodological pitfalls [13, 66].

For other researchers investigating similar effects using MTurk, we
recommend carefully adjusting the payment in pilot studies and grad-
ually extending sample sizes to ensure that task descriptions contain
realistic timings and payment levels equate to task completion times.
We fixed payment too early on a level that was too low, retrospectively.
We reimbursed participants through MTurks bonus system after the
study to ensure payment according to minimal wages in the US.

Limitations As with every empirical study, our work does not come
without limitations. Our general approach was of exploratory nature,
with limitations in the individual study designs, and the statistical
implications of the underlying decisions we made.

Study 1, for example, is subject to variations of multiple variables
in any condition, as we changed ordering and the stimulus selection.
No study controlled the timing in which judgments were made. Typ-
ical studies on priming prefer subliminal presentation of primes (i.e.,
exposure of < 100ms), as this clearly separates from anchoring effects.
However, such approaches were not feasible in a web-based Mechani-
cal Turk setting and did not fit our application-driven focus. Judgment
input was changed during the experiments (Likert scales for study 1, 2
and 5, sliders for study 3 and 4). Both types of inputs cause differences
in exposure to the priming stimulus, affect judgment, and affect error
rates. No control of presentation was performed. Differences in users
displays (e.g., resolution, color representation) could have influenced
the results.

Studies 3 and 4 showed bi-modal distributions of both target stimuli.
We assume this was due the users’ potential urge to ‘take action’ and not
simply accept the default value, which was set to the center of the slider.
In cases where the default value might be a sensible option, deciding
in which direction to move the slider could lead to such a distribution.
Users first decide to move the slider either left or right, and then move
it a certain distance. Also, since we did not use tickmarks on the
slider, users could not base their judgments on a number. If we assume
that users have no inherently preferred direction, when presented with
such a (semi-)forced-choice, then on average the effect should cancel
out. A follow-up study with no default option and tickmarks would be
interesting to shed further light into this question.

In no study did we explicitly instruct participants to judge separabil-
ity spatially. In theory, we could have accidentally caused participants
to judge separability because of chromostereopsis. Since we picked
highly saturated blue and red, viewers could have moved the blue points
into a lower viewing plane and considered this for separability. How-
ever, the results from study 5 indicate that on average spatial distance
was indeed used to assess separability.

From a statistical point of view, judgments are not normally dis-
tributed, as they are limited by the judgment scale. And neither are
the stimuli, whose centroid distance was also limited between 0 and
4 standard deviations. Thus a Bayesian approach to modeling could
reveal more faceted understanding of effects. Our approach might
overestimate the size of effect here.

However, we believe the overall results and the diversity of studies
outweigh these limitations. Every experiment needs to make a care-
ful trade-off between the many influences that add onto each other,
specifically in more complex, application-driven settings.

Future Work Future work can immediately be seen in changing
parameters in our experiments and extending it to other types of vi-

sualizations, tasks, and biases. Once a more consistent picture of the
influence exists, one can start trying to counter-act the effect and wonder
what a better model of perception means for the field of visualization.
In our work, we started using 200 samples bivariate distributions merely
shifting centroid locations. We can use more or less samples, other
distributions, or more classes. Other metrics, such as clumpiness, den-
sity or other factors [52, 63], can be varied to investigate their effect
on priming or anchoring as well. As already partially addressed in
study 1, repetition priming could be investigated by providing a se-
ries of priming stimuli before showing the target stimulus. Instead of
judgment tasks, priming effects on just-noticeable differences could be
investigated as well (e.g, by stair-case procedures [16]). By changing
the instructions of the task (e.g., ‘Make sure the previous stimulus does
not influence your judgment’) moderatability could be investigated. Do
instructions counter-act the effect, or does the visualization have to
start to become ‘deceptive’ by distorting data? What about parallel
presentation, as in scatterplot matrices or small multiples?

As mentioned before, even though our results are consistent in show-
ing an effect, we have not yet demonstrated that such an effect can
actually be counter-acted in a visualization. By predicting the effect in a
study setting, we could artificially move clusters apart and see whether
judgments are more accurate to the ‘intended data’. This would be
a first step in using the effect to improve visualizations. This idea
goes in a similar direction as user-adaptive visualizations, where the
visualization adapts to users capabilities, preferences and—with the
findings from future research—possibly to the users biases as well.
The interaction of bias and inter-individual differences is particularly
interesting, as some biases are affected by inter-individual stable and
unstable factors (e.g., mood or expertise [14]).

The visual encodings in our experiment were completely free from
interpretation, or at least no explicit one. How would priming affect
judgment if the data represented data from different fields of study?
Is cancer-data more susceptible to bias than sales-data? What if each
cluster refers to different nationalities and separability indicated dif-
ferent capabilities? Would such a setting increase anchoring effects
from hypotheses? Would prejudices translate to bias in visualization?
Extending this research to other types of visualizations, tasks, and bi-
ases is relevant for an adequate model of human perception. In the
long-term, such research could enable visualizations to communicate
what they intend to and help users to overcome their biases.

6 CONCLUSION

Much visualization research has aimed at modeling the perception of
visual patterns. Systematic errors—or biases—in this process, however,
have been largely overlooked so far.

In this work, we sought to gain a better understanding of a specific
type of biases, namely priming an anchoring effects in visualization.
Our findings show, that in fact these effects can be observed for the
task of class separability in scatterplots. However, we see our work
only as a starting point rather than a final answer. To the best of our
knowledge, no one has shown that biases impact people’s sequential
judgments of visualizations. We envision that studying such effects
will become a viable area of visualization research, and hope that our
work will inspire others to study visual biasing effects for other tasks,
under varying conditions, and from different angles.
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the influence as a determinant of assimilation versus contrast. European
journal of social psychology, 23(1):53–62, 1993.

[58] J. Talbot, J. Gerth, and P. Hanrahan. An empirical model of slope ratio
comparisons. IEEE Trans. Vis. & Comp. Graphics (TVCG), 18(12):2613–
2620, 2012.

[59] E. Tulving and D. L. Schacter. Priming and human memory systems.
Science, 247(4940):301, 1990.

[60] A. Tversky and D. Kahneman. Judgment under uncertainty: Heuristics and
biases. In Utility, probability, and human decision making, pp. 141–162.
Springer, 1975.

[61] D. Vorberg, U. Mattler, A. Heinecke, T. Schmidt, and J. Schwarzbach. Dif-
ferent time courses for visual perception and action priming. Proceedings
of the National Academy of Sciences, 100(10):6275–6280, 2003.

[62] M. A. Webster and D. Leonard. Adaptation and perceptual norms in
color vision. J. Opt. Soc. Am. A, 25(11):2817–2825, Nov 2008. doi: 10.
1364/JOSAA.25.002817

[63] L. Wilkinson and A. Anand. Graph-theoretic scagnostics. Proc. IEEE
Information Visualization Symp. (InfoVis), pp. 157–164, 2005.

[64] G. Wills and L. Wilkinson. Autovis: automatic visualization. Information
Visualization, 9(1):47–69, 2010.

[65] T. D. Wilson, C. E. Houston, K. M. Etling, and N. Brekke. A new look
at anchoring effects: basic anchoring and its antecedents. Journal of
Experimental Psychology: General, 125(4):387, 1996.

[66] E. Yong. Nobel laureate challenges psychologists to clean up their act.
Nature, 490:7418, 2012.

11


	Introduction
	Related Work
	Modeling Visual Perception
	Biases in Visual Perception

	Overview
	Focus and Justification
	Five Studies and Main Results
	Experimental Procedures
	Hypothesis

	Five Studies
	Pilot Study 1 – Measuring Bias in the SepMe Dataset
	Pilot Study 2 – Finding Target Stimuli
	Study 3 – Measuring Priming Effects
	Study 4 – Removing All Training Tasks
	Study 5 – Prediction of Rating Judgment

	Discussion
	Conclusion

